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Abstract— The problem of grasping objects with robotic
hands has a long history in literature, yet many issues are
still open, especially when dealing with the perception of the
touched object, and its manipulation. These two problems are
usually analyzed separately; however, since the sense of touch is
intrinsically an active sense, i.e. motion and perception are two
sides of the same coin, it could be useful to deal with these two
aspects in an integrated fashion. Indeed, as we can borrow from
the active sensing literature applied to vehicles locomotion, the
motion itself could be valuable source of information on the
system’s state. In this work, we propose a first step in this
direction, targeting the development of a novel optimization
framework for the estimation of the inertial parameters of
a grasped rigid body. In a nutshell, the goal is to identify
the optimal manipulation actions that a robot should exert
on a generic object to maximize the accuracy and minimize
the uncertainty for the estimation of unknown mechanical
properties of the manipulated item, such as its center of mass
and inertia tensor.

Index Terms— Active sensing, rigid body dynamics, grasping,
optimization

I. INTRODUCTION

Having intelligent machines embedded in our society in
the next years will come with a number of significant
benefits, since this will provide significant improvements in
the productive process and will increase the quality of life of
workers and citizens. However, to reach this goal, we will
need to teach robots how to interact with an unstructured
and unknown environment. While a lot has been done in the
field of robotic grasping and manipulation, from data-driven
to model-based methods, as well as the haptic exploration of
objects [1], [2], these efforts are not currently matched with
the sensing – and then perception – of the grasped object.
This represents an important prerequisite for an effective and
natural interaction, which must be also guaranteed through
a precise planning and control of the robotic end-effector.

Focusing on that, we took inspiration from [3], in which
the authors discussed the problem of constructing an online
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trajectory that minimizes the maximum state estimate uncer-
tainty offered by the used observer in the context of planning
for information maximization. In other words, the goal is to
determine which trajectories convey the most information
about the internal state of the considered system. Building
on this idea, we found the most informative trajectories that
a generic robot should excert on a rigid object in order to
collect the maximum information on its inertial parameters.
Extensive simulations were performed, comparing 50 ran-
dom movements, chosen as initial-guess for the optimization
routine, to the correspondent 50 optimal movements.

II. METHODS

As reported in [3], the Constructability Gramian (CG) is
directly linked to the state error covariance matrix P of the
Extended Kalman Filter (EKF) by the relation GC(−∞, t) =
P−1(t). While the expression of the CG is generally non-
trivial, in certain circumstances it can be written in closed-
form, for example when the state of the system is constant
over time, i.e. ẋ = 0. In this case, given an output equation
y = h(x) + w, where w is the measurement noise (gaus-
sian, with noise covariance matrix R), with a corresponding
linearized output matrix H = dh(x)

dx , the CG results:

GC(t0, tf ) =

∫ tf

t0

HT (t)R−1H(t)dt. (1)

Since the CG for non linear systems depends on the input
vector u of the system (through the matrix H), the goal is
to find the optimal input u∗ which maximize a particular
norm of the Gramian. In particular, maximizing its lowest
eigenvalue λmin(GC) is equivalent to the minimization of
the maximum estimation uncertainty of the estimated state
[3]. So, u∗ can be found solving the following problem:

u∗(t) = argmax
u(t)

λmin(GC(t0, tf )) (2)

Choosing as outputs the external wrench wext acting on
the object, expressed in body frame, it is possible to obtain
the Gramian expression from the Lagrangian form [4]:

wext = M(π)ν̇ + C(ν, π)ν +G(r, π), (3)

where π includes the 10 rigid body inertial parameters,
constant with respect to each frame {b} fixed to the object
(the mass m, the center of mass bc ∈ R3, and the six
independent components bi ∈ R6 of the inertia tensor bI).
ν, instead, includes the object linear and angular velocities,
expressed also in body frame, while the quaternion r encodes
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Fig. 1: Comparison of random vs. optimal movements: on the left, the maximum eigenvalue of the matrix P (mean ±
interquartile range); in the middle, the estimation error along the three directions defined by the body frame (mean ±
interquartile range); on the right, the convergence of optimal and random estimation errors, considered as distance from the
effective center of mass (dotted lines correspond to convergence time at an error norm of 5 mm).

the rotation between the global frame {g} and the body frame
{b}.

Indeed, the output matrix consists in the form:

H =
dh(π)

dπ
=

[
∂h1

∂c
∂h1

∂i
∂h2

∂c
∂h2

∂i

]
=

[
Hc 0
∗ Hi

]
,

where the inertia tensor terms do not affect how the
center of mass and external forces interact. As a result,
it is reasonable to proceed with a two-phase estimation
procedure: first, we can identify the center of mass exploiting
only the external force measures and the optimal movement
founded through the Gramian GCOM =

∫ tf
t0

HT
c R

−1Hcdt;
then, the inertia tensor terms using the external torque
information (supposing to already know the center of mass
position), exploiting the Gramian GIN =

∫ tf
t0

HT
i R

−1Hidt.
Furthermore, the matrices Hc and Hi depend exclusively on
the angular velocity ω and angular acceleration ω̇ of the rigid
body. So, it is possible to choose a particular parametrization
of the angular velocities (e.g. sinusoidal segments) that
depends from a limited set of control points, and perform
the optimization on those ones.

III. RESULTS

Here we report some preliminary results obtained through
extensive simulations, where 50 random movements were
used as initial guess for the optimization on the estimation
of the center of mass; the 50 optimal movements obtained
through the algorithm were compared to the random ones,
as reported in Figure 1. The robot Franka Emika Panda
was considered as manipulating device, with the rigid object
rigidly grasped by a gripper in a form closure situation.
Similar results were obtained for the inertia tensor, and they
are omitted here for sake of space. The control points of the
optimization were bounded inside a window of ±1 rad/s,
while the time of simulation was fixed to 10 seconds. The
maximum eigenvalue of the matrix P results smaller for
the optimized movements, as the optimization tackles the
reduction of this metric; as a consequence, the estimation
error results way lower for the optimal movements, and also

the time of convergence to a certain value of the error is
faster for the optimal movements.

IV. CONCLUSIONS

We presented an optimization framework to find the opti-
mal trajectories which allow to identify a rigid-body inertial
parameters while being grasped. This optimization yields
on the Constructability Gramian, which is an observability
metric directly linked to the state error covariance matrix of
an Extended Kalman Filter. The optimization is flexible to
the introduction of constraints related to the robot’s limits
or for the accomplishment of lower-priority tasks, or even
granting force closure on the object while manipulating it.
This procedure could be applied to different generalized
gripping tools, ranging from multi-fingered hands to fleets
of drones or cooperating ground vehicles. This work could
open interesting perspectives toward important improvements
for robotic manipulation linked to the tactile exploration
and manipulation of objects, thanks to a full exploitation
of the connection between sensory acquisitions and control
actions. The technology that will be developed could have
a significant impact on industrial settings and also on other
issues, where having a robot capable of performing tasks
independently can dramatically improve the efficiency of
human-robot interaction. Future works will focus on testing
the framework in a real scenario, with particular attention
on force closure with different grippers and simultaneous
perception and manipulation.
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